
Modelling High Data Rate Communication
Network Access Protocol *

S. I~I:LIII~:L, E. C. Foiitlriat, F.PiLt,(!rr:t,
I<. Maly, C.M. Overstreet
Old Doiniiiioii Uiiiversi ty

Norfolk, VA 23529

April 23, 1990
Draft

1 Introduction
Modelling of high data ratc comniunicatioti systcuis is different from the low
data rate systcms. Unlikc tlic low data ratc systcrns a mcssa.ge does not f i l l
the whole network structurc, so there can be marly messages on the systcm
at one time. It implics that more than one cvetit may take place at a time
and it is impossible to model the network by treating messages as entities
which start and end before other events take place. Previous experience with
simulations of networks where only a single message was considered indicated
that protocol models are coinplex and simulations usiially take a long time
to run on the computer.

Three simulations were built during the development phase of CSMA/RN
modelling. The first was a model using Simscript was based upon the deter-
mination and processing of each event at each node. The second simulation
was developed in C based upon isolating the distinct object that can be idcn-
tified as the ring, the message, the node, and the set of critical events. The

'This work was supported in part by CIT under grant INF-89-002-01. by NASA under
grant NAG-1-908, and by Sun Microsystems under RF596043

1

third model further identified tIi(1 basic Iictwork Cuiictionality by creating a
singlc objcct,, tlic tiotlc wliicli iiiclritlcs I I I C .;(,I of crilricr71 cwvits which o (~ r i r
a t the node. Thc ring strrictrrrc is irnplicil i i i tltc riotlc strrict t i i c This motlcl
was also bu i l t in C.

In this paper, we will tliscriss cach motlcl and compare their features. It.
should be stated that the Ianguagc uscd was mainly selected by the model de-
veloper because of his past familiarity. Further tlie models were not built with
the intent to compare either structure or language but because the complex-
ity of the problem and initial results contained obvious errors, so alternative
models were built to isolatc, determine aiicl correct programming and mod-
eling errors. The next sectioii discusses the CSMA/RN protocol in sufficicnt
detail to understand moclelling coinplcxitics. I n tlie following sections, each
model is described along witli i t s features and problems. Following this the
models are compared and conclucling observations and remarks presented.

2 Description of CSMA/RN protocol oper-
at ions

The network access controllcr for CSMA/RN is shown in Figitre 1. The in-
coming signal is split into lwo strcarns, oiic tltrouglt a delay line or buffcr.
The node controller, based iipoii inforinatioii accumulated in the buffer, is
required to make a number of tlccisioiis. First, it iiiust detect the presence of
incoming data; if it exists, the node must always propagate incoming infor-
mation as the outgoing signal to the next node on the ring because it would
be impossible to recreate the packet unless suficient storage is provided. If
no incoming packet exists, the node is free to place its own data on the ring
if its queue is not empty. However, during the time this latter data is being
transmitted, if an incoming packet arrives, then the node, within the timc
limits dictated by its buffer size, must discontinue its transmission and han-
dle the incoming packet. Hence, packets once on the ring take precedence
over the insertion of new packets.

Packets are tested at each node to determine if the incoming packet is
destined for this node and should be copied to its incoming data buffer (not
shown in Figure 1). In addition, to improve the network operation, packets
are removed a t the destinalioii so the noclc can use the free space to send

I
I
I
1
I

* I
I
I
I
1
I
I
I
I
I
I
1
I
1

2

I
I
1

I
I
I

information waiting in its qucue. Destination rcmoval improves performance
under uniform loading by a fa.ct,or of two 11.

Figurc 2 illustratcs tlic cvciits that cat1 occur at cncli node based upon tlic
travel of empty and full packets of data around the ring as time progresses.

3 Simulator I - Simcript - Node Event List

3.1 Model structure
The first model attempted for the simulation of CSMA/RN was a SIM-
SCRIPT based model consisting of approximately 900 lines of SIMSCRIPT
code. The simulation was written to be event driven, rather than process
driven, and haa four event types. Because of memory constraints, outgoing
messages are only generated when there exists and opportunity to transmit.
because of this, all events are initiated by external t r a f k passing in front of
the node. The events are defined as follows:

e start.of.message given node.id, destination, and mestage.id - executed
when a new message is seen passing in front of a node. This event .

3

terminates any internally generated message that is currently being
transmittcd and placcs it in a queue for retransmission, sets a busy
flag. If the message seen is not for the current node, a start.of.rnessage
event of posted for tlic ncxt node in tlic ring.

0 end.of.rnessage given node.id, destination, length, and rnessage.id - This
event is executed when the end of a messages passes in front of the
node. The busy flag set in start.of.rnessage is reset and statistics are
updated. As with start.of.rnessage, an end.of.rnessage event is posted
for the next node in the ring. After this event completes execution, the
current nodes has an opportunity to transmit any data pending.

0 interrupt.rnessage given node.id, destination, length, and rneswge.id - This
event is similar to the end.of.message event, but is initiated when a
message is interrupted during transmission. As this event is propa-
gated through the nodes, the processing is the same as that of the
end .of. rn essage event.

0 check.flag given node.id - When a locally generated message begins
transmission at a node, a flag is set to indicated that the node is cur-
rently transmitting. This flag inhibits the node from trying to transmit
more than one message concurrently, but i t must be reset when the
message completes transmission. To reset this flag at the proper time,
the event check.flag is scheduled to execute when the message termi-
nateds transmission. This event resets the flag and, if the message was
not interrupted, posts an end.of.rnessage event for the next node in the
ring.

In the above events, the parameters are defined as follows:

0 node.id - This is the number of the node that must execute the event.

0 destination - This is the destination of the message.

0 length - This is the length of the message, or partial message in the
caSe of an interruption that wits sent.

0 rnessage.id - This parameter is used to insure that all messages are
processed in order.

4

1
1
I
I
1
I
I
I
1
I
I
I
1
I
I
I
1
1
I

4 Three Object Model

4.1 Model Structure
In this model of CSMA/RN three distinct structures, the ring, the node and
the event list, were manipulated by code related to each structure. While
they were not identified as objects per se, as in C++, they were separate
code blocks in the later versions of the program, In the following sections,
we will describe each unit.

4.1.1 Ring S t ruc tu re

The ring is defined by the number of bits that can exist simultaneously. For
example, a 10 km length ring with a 1 Gbps data rate assuming media speed
of 5 microsec/km contains 50,000 bits. The ring is modeled as a doubly
linked list of data structures containing the necessary data for a packet (a
packet is a contiguous portion of a total message). The packet data includes
the bit position of its begin and end location on the ring, its length in bits,
the packet condition (e.g., free, in use, etc.), message information including
source, destination and message number, and left and right pointers to the
packets on the ring. Ring operations include updating the packet locations
by the increment of time for the next event and linking,delinking,creating
and combining packets.

4.1.2 Node S t r u c t u r e

The nodes were defined to be at fixed bit locations on the ring. The nodes
were modeled as an array of structures with each succeeding node at a higher
bit location. The node data structure contained considerable information
including:

1. node number, location and distance to previous node;

2. message details e.g. destination, length, timing data;

3. operational statistics on network performance; and

4. a pointer to the packet presently at the nodes location.

5

The procedures rclating l o iiotlc opcra1,ions incliicle collection of operationid
information, new message generation, updating the packet pointer as packets
progressed around the ring and handling the events which occurr at the node.

4.1.3 Event S t r u c t u r e

The event structure and its operations were fairly standard. The event list
was a doubly linked list will1 a.n cvcnt typc, pointers lo the node and/or
packet related to that event, and pointers to complete the list. Procedures
related to event processing consisted of creating the event and linking it into
the event list either from the head or tail.

The main program is an event handler. The next event is read, the
ring and nodes updated as needed, and the event processed. The event can
change the ring and/or node conditions. After the event is handled, those
nodes which are ready but do not have free packets assigned for their ready
message are processed so that if a free packet is available then it can be
assigned.

4.2 Experiences
The major difficulties in developing the ring system were in programming
the correct wrap around conditions for the ring position and for the various
tests relating node locations to packets on the ring. The combining of empty
packets is necessary to reduce the number of events as empty spaces are filled
more readily. For updating packet pointers, it was found that it had to be
checked each time packets were created, removed or moved, since any of these
conditions could change the node to which packet pointed.

Table 1 shows the breakdown of subroutine code for each major structure.
The general code includes I/O, initialization routines and generic procedures.

The major problem of coding and debugging was the identification of the
event interface between the packets on the ring and the nodes. Initially, two

6

I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I

events were described, the insertion of a new packet at a ready node and the
removal of a packet which liacl rcaclicd its dcslination. In order, to schcdulc
packet insertion, the node, when ready, looks at the packet at its location.
If it is empty, a new packet is created starting a t the present location; if the
packet at the location is full, the node searches arriving packet to identify an
empty packet. If an incoming empty packet is found, an event is created for
its arrival time at the node. Arriving full packets are emptied and the node
checked to see if it has a ready message.

The major event handling difficulties arise due to potential interaction of
these events with adjacent up stream nodes. First, if an arriving full packet
length encompasses the previous node(s) the packet can not be completely
emptied or else the previous nodes may incorrectly identify the packet as
empty and use it. Thus, the packet must be truncated at the previous node
and a pseudo arrive event created to take care of new event. For very long
packets a number of subsequent pseudo events may be necessary.

Very similar problems occur for filling empty packets and searching for
empty packets for a node to use. Packets can not be created for a length
greater than the previous node since that node may become ready and occupy
a part of the empty packet. Alternatively, a node can not identify for use
an empty up stream packet which a prior node may use before the packet
arrives at the node in question. This creates handling problems which make
the originally simple events quite complex and account for much of the code
and most of the programming problems.

I

5 One Object Model
The model is based on the fact that the carrier sensing is local to a node and
the nodes implicitly refer to the ring. The main events which result from the
local carrier sensing are :

0 A node receives an upstream message not destined for itself and gets
interrupted and starts reposting the upstream message.

0 A node is transmitting a message which is on the head of its queue.

0 A node is idle i.e. node has an empty queue.

The unit of measurement in the model is a bit.

7

5.1 Node Structure
The ring is modelled as an array of nodes and broadly speaking each node
has the following structure -

0 The Node Status: Transmitting, Idle or Reposting;

0 Head of the Queue: Information about the message which is on the
head of the imaginary queue at a node. For example, arrival time of
the message, message length, its destination etc. In this model a queue
never exists but a new arrival is scheduled whenever a message is fully
transmitted which may be well in future or way back in past;

0 The Interrupt Timetable: A linked list of interruption times for a node
and the duration of interruption. It lists the time a node will pre-empt
the current message if it is transmitting (and resume later) and start
reposting for the duration mentioned in the list;

0 Statistics: Network performance satistics.

5.2 Interaction
The operation of the model is mainly goverened by a schedular,Next Time
Generator, which looks at local conditions at all the nodes and then decides
the next time when a set of events will fire at different nodes. The resulting
flow is depicted in the figure 3.

5.3 Experiences
Two or more events may occur simulatneously on the ring. The schedular has
a tight job to decide about the next time it will return. Also, the interrupt
timetable has to be maintained carefully enough else the packets on ring will
start cramping on each other.

The ring under heavy load may have a state where all the messages can
be in a bumper to bumper situation. If a node finds this state of the ring
in its interrupt timetable, it will continue to repost till it finds a hole on the
ring.

8

I
1
I
I
1
I
I
I
I
I
I
I
I
I
I
I
1
I
I

For packcts of sizes cqunl to tile bitlcngth betwccn two consecutive nodes,
a proxy-completion of the mcssage is caused which is identical to buf = 0
state in the flow given in fig.3. The proxy-completion avoids a phenomenon
where each node checks for its transmit complete and next node's interruption
before int,errupl.iiig and finishing transmixion.

.-

M n i t c 0
. I

A ..'V '- . - , +

t
I 00

t
00

Io nomoi 101 an ~ t e nodes ~1 IM rlnp 1 1Oon-M M IW < uonhml

F i g . 3 Flowchart for one object model
I

9

6 Discussion
Decisions are based on the local conditions at a point in the network and
not on global conditions. Even if the decisions are simple, complexity may
occur because prior decisions when propagate, influence the present network
condition at some other point in the network. Conditions on the network
evolve. Each bit or indivisible block of network should be modlled so that it
and its effects on the network conditions can be developed.

Various types of runs were made to study simulator confidence. Data were
collected for intervals during a run and compared as to their variability and
to the mean of all data collected for the run. We plotted wait time, the most
sensitive of the variables, taken at the end 10 intervals, and the cumulative
average taken of the active period of the run. Load fractions of 1.0 and 1.5
were used since at the higher loads, fluctuations tend to be greater. First, it
was found that the ring tended to reach steady state values rather quickly,
but its results still varied considerably between intervals. It was found that
in order to obtain data with a 90% confidence in the mean accuracy, the ring
had to cycle a number of times, where a cycle is the time for information to
completely traverse the ring. In general, about 1000 - 5000 cycles was found
to be sufficient elasped time. Figure 4 shows a comparitive result for wait
time analysis for a 10 nodes, 10 Km, IGbps, and 2 Kbits messages.

I I I 1

load fraction
Fig.4 Comparitive results for wait times

10

7 Concluding remarks
To date, CSMA/RN studies have been limited to simple asynchronous data
operational conditions. Additional study is required to document its perfor-
mance for messages with variable lengths, for non-uniform load conditions,
for conditions where ring domination by a few nodes can occur, and for
large node count conditions where message fracture is most likely. Proto-
col procedures must be developed and studies must be done for CSMA/RN
to effectively handle integrated traffic, Le., synchronous traffic consisting of
voice and video data in conjunction with asynchronous messages. It means
that the model’s capability to handle complex decisions needs expansion as
operational features of the protocol become known; thus adding capability
to the model further increases its complexity.

11

